1 Q. Provide details, showing the calculations of interest coverage for the years 2 1992 to 2000 and forecast for 2001 and 2002. Follow the format used in 3 JCR, Schedule IX in calculating interest expense. Provide separate 4 calculations for interest coverage on regulated and non-regulated assets. 5 6 7 Α. The attached schedule shows the calculation of Hydro's interest coverage 8 (excluding subsidiaries) but including non-regulated sales for the years 1992 9 to 2000 and forecast for 2001 and 2002, following the format used in JCR, 10 Schedule IX to calculate interest which is different than the normal calculation 11 of interest coverage as approved by the Board. 12 13 The calculation of regulated interest coverage is based on the definition of 14 gross interest as historically defined and margin as per the cost of service.

1 2 3	Q.	(a)	Provide copies of reports completed by Hydro recommending the implementation of Reliability Centered Maintenance (RCM) pilot projects.
4 5		(b)	Provide information regarding the results and current status of these pilot projects.
6			
7 8 9	A.	(a)	In 1997, Transmission and Rural Operations initiated a review of its maintenance philosophy. Attached is an internal memo outlining the findings and recommendations of the review completed by the Maintenance Specialist and Senior Electrical Engineer.
11			
12		(b)	RCM Pilot Projects
13			In 1997, Newfoundland and Labrador Hydro initiated an investigation
14			of the applicability of reliability centered maintenance in the
15			Transmission and Rural Operations Division.
16			
17			Phase 1 of the project included:
18			 An overview of the experience of other utilities with RCM and the
19			benefits achieved.
20			 A high level review of Transmission and Rural Operation's current
21			maintenance practices and of the maintenance support information
22			systems.
23			 An estimation of the internal resources required for the pilot
24			projects.
25			A plan and timetables for the implementation of the three pilots.
26			Criteria for pilot system selection.

	•			
Da	MΔ	2	Λf	3

1	 Interviews of maintenance craft personnel and maintenance 		
2	engineering staff.		
3	Three systems, one in each of generation, transmission and		
4	distribution areas of Transmission and Rural Operations, were		
5	selected to be pilot projects.		
6			
7	The systems recommended and chosen for pilot studies were:		
8	 Generation: Rigolet isolated diesel generating plant 		
9	 Distribution: L'Anse-au-Loup on the south coast of Labrador 		
10	Transmission: Come by Chance terminal station and adjoining		
11	transmission lines.		
12			
13	Phase 2 of the project encompasses performance of the pilot studies:		
14			
15	The goals of the pilot projects were:		
16	 Prove the concept of RCM. 		
17	 Acquire in-house expertise and capabilities. 		
18	 Assess the viability of applying the RCM approach to other 		
19	systems in Transmission and Rural Operations.		
20			
21	The strategies and key findings identified from the Pilot's RCM		
22	analysis were used to select proposed maintenance tactics. An		
23	analysis of the comparison of the current maintenance effort and the		
24	proposed RCM maintenance effort identified the benefits. (It is		
25	important to note that the actual benefits may somewhat differ, since		
26	individual regions are not always performing maintenance using the		
27	same intervals).		

2001 General Rate Application Page 3 of 3

1	The overall results of the review indicated that the RCM concept is
2	applicable to the systems reviewed in the pilots and that this process
3	can also be applied to the other systems in Transmission and Rural
4	Operations.
5	
6	The pilots were started in 1997 and completed in 1998. The results of
7	the pilots suggested an implementation time frame of three to five
8	years with a payback of around 1.2 to 2.1 years.

1	Q.	Using the current forecast, expand JCR, Schedule XIV to provide estimates
2		of the Rate Stabilization Plan balances for year-end 2003 and year-end
3		2004.

4 5

6 The estimates of the Rate Stabilization Plans are as follows: Α.

8	<u>Year</u>	Balance	<u>Retail</u>	<u>Industrial</u>
9		(\$ millions)		
10	2003	84.7	62.0	22.7
11	2004	54.8	37.0	17.8

1 2 3	Q.	(a)	Provide the utility common equity ratio for 2002 dividend payout (KCM, pages 23-24);	2 assuming a	a 75%
4 5 6 7		(b)	Provide a comparison of the dividends paid from forecast for 2001 to 2002 with the dividends the paid in each year if the 75% payout target was	at would hav	
8 9 10 11 12		(c)	Provide the estimated impact on revenue required financing the \$70 million dividend payout as statement of cash flows (JCR, Schedule XIII).		
13	A.	(a)	Please see schedule below.		
		Total Emplo	d on 75% Dividend Payout Debt at end of year Debt at end of year Debt at end of	2002 (000's) 1,316,147 25,123 273,632 1,614,902	<u>%</u> 81.50% 1.56% 16.94% 100.00%
14		(b)	Please see attached schedule.		

million if the \$70 million dividend were eliminated.

It is estimated that the revenue requirement would be reduced by \$1.7

15

16

17

(c)

Year	Net Regulated Operating Income (000'S)	75% of Net Regulated Op Income (000'S)	Dividends Paid During Year - ex Recall and CFLCo (000'S)	As a % of Net Reg Op Income
1995	22,829	17,122	14,500	64%
1996	20,693	15,520	9,688	47%
1997	31,351	23,513	12,357	39%
1998	24,847	18,635	10,489	42%
1999	13,015	9,761	1,309	10%
2000	5,829	4,372	10,026	172%
2001	13,727	10,295	11,976	87%
2002	9,610	7,208	70,147	730%
	141,901	106,426	140,492	

Q. Provide a copy of Hydro's financial plan to achieve the 80/20 short-term
 target for debt/equity (WEW, page 14, line 20). If no such plan exists in
 writing, provide details of Hydro's current intentions.

A.

It is Hydro's intention to move towards an 80:20 debt/equity ratio over a reasonable period of time. A key factor in moving towards an 80:20 debt/equity ratio is achieving an appropriate return on equity in rates, comparable to investor owned utilities as well as a stable dividend policy. Once Hydro has received further direction from the PUB regarding an appropriate return on equity and further discussions have taken place with the shareholder regarding Hydro's role and confirmation of a stable dividend policy, Hydro will be in a position to better assess its plan to achieve an 80/20 short term target for its debt/equity.

1	Q.	(a)	Provide a report on the cost benefit analysis performed to justify the
2			purchase of the J.D. Edwards suite of products (WEW, page 19, lines
3			17-20).
4			
5		(b)	Compare actual to forecast costs regarding this purchase.
6			
7			
8	A.	(a)	Please find attached the business case which was used in the
9			decision to purchase the JDE suite of products.
10			
11		(b)	The table below outlines the budget and actual costs for the purchase
12			and installation of the JDE suite of products.
13			
14			

15		
15		Budget
16	Total Capital	\$13,5
17	Less CF(L)Co	2,5
18	Total Hydro	10,9
19		Difference
20		Dillelelice

	Budget	Actual
Total Capital	\$13,520,000	\$12,829,520
Less CF(L)Co	2,528,000	2,022,228
Total Hydro	10,992,000	10,807,292
	Difference	184,708

1 Q. For the budget item identified below, answer the following question:

3	Budget Item	Amount	Description
4	B-15	\$158,000	Install Intake Stop logs – Paradise River

This plant has been in service for a number of years. What makes installation of stop logs necessary now?

Α.

During the construction and commissioning in 1988 of the Paradise River power plant, stop logs and stop log installation and removal equipment was not procured due to budget restraints. However, provision was made so that stop logs could be installed when necessary. We have experienced wicket gate slippage caused by debris, where one or more wicket gates remain partially open upon unit shutdown resulting in having to close the intake gate. The intake gate provides the only means of shutting down the unit when this occurs. Since it is very important to maintain the integrity of the intake gate, they should be inspected on a regular interval. Without the stop logs any inspection (including diving inspection) of the intake gate guide is unsafe. As the plant is getting older, Hydro must have means available to safely perform inspections and if necessary repair as required.

1	Q.	For the budget item identified below, provide the following information:			
2					
3		Budget Item	Amount	Description	
4		B-20	\$225,000	Upgrade Oil Systems for Fire	
5				Protection on Unit No. 3 - Holyrood	
6					
7		Provide a copy of	the insurer's recom	mendation requiring installation of the	
8		containment dykes and the upgrade of sprinkler piping.			
9					
10					
11	A.	Please refer to the	e attached.		

For the budget Item identified below, provide the following information: Q.

2					
3		Budg	et Item	Amount	Description
4		B-18		\$177,000	Purchase Track Machine – Cat Arm
5					
6		(a)	Provide the	number of enclose	d track machines that Hydro has on the
7			island and th	ne normal location	of each vehicle.
8					
9		(b)	Provide insta	ances where lack o	f such a vehicle resulted in a
10			lengthening	of any outage(s) of	the Cat Arm facility and the cost of the
11			extended ou	ıtage(s).	
12					
13					
14	A.	(a)	Following is	the list of the enclo	sed track vehicles (Muskeg, Nodwell,
15			Tereveh and	d LMC) on the islan	d and their normal locations.

LOCATION	NUMBER OF VEHICLES
Bay d'Espoir	5
Bishops Falls	8
Port Saunders	3
Springdale	2
St. Anthony	3
Stephenville	5
Whitbourne	5
Happy Valley	1
Total	32

Page	2 (of	2
------	-----	----	---

The vehicle budgeted and suitable for Cat Arm application is type LMC (with 32 inch wide track) and there is only one enclosed track machine of this type in the Hydro system which is normally located at Stephenville.

(b) Until 1998 there was a similar track machine or track truck available and stationed at Cat Arm to transport workers and material and groom a trail for the use of individual snowmobiles. This machine experienced maintenance problems and was disposed of at the end of its useful life. Since then, alternate methods using a Go Track to groom the trail in winter months have been used, however this has proven to be ineffective especially in heavy (deep) snow. During this period (when the proper track machine was not available) extended outages have been avoided. Trail grooming has been a difficult task and has increased the travel time to the plant. It is concluded that lack of a suitable track machine at Cat Arm has a potential for extending the unit outages during the winter months.

1 Q. For the budget item identified below, provide the following information:

2

18

19

20

21

22

23

24

			Budget Item	Amount	Description
			B-19	\$801,000	Purchase and Install Continuous Emission Monitoring
3					3
4		(a)	Provide a copy	of the health r	isk assessment that concluded
5			quantification o	of emissions is	required.
6					
7		(b)	Explain why th	e other monitor	ring equipment currently in place is not
8			sufficient to ca	lculate emissio	ns.
9					
10		(c)	Detail the bene	efits that will ac	crue from enhancement of control of the
11			combustion pro	ocess.	
12					
13					
14	A.	(a)	Attached is a	copy of "Holyro	od Risk Assessment Final Report
15			Summary", No	vember 1999.	
16					
17		(b)	The equipmen	t currently inst	alled measure only S0 ₂ emissions.

- Without an exact SO_X / NO_X emission ratio, the impingement of gaseous NO_X cannot be determined. The actual SO_X / NO_X emission ratio is dependent on:
 - The sulphur content of the fuel;
 - The nitrogen in the fuel; and
- The excess oxygen present during combustion.

		2001 General Nate Application
 1		Page 2 of 2 The actual emission ratios for all fuel composites are required to
2		assess the viability of assumptions based on the above report.
3		
4	(c)	Air emissions from the Holyrood Thermal Plant consist of, in part,
5		particulate, NO_x , SO_x and acid aerosols. Continuous emission
6		monitoring will provide the data necessary to control the combustion
7		process and permit management of emissions. The plant currently
8		does not have this capability.

1 Q. For the budget item identified below, answer the following questions or 2 provide the information as appropriate: 3 4 **Budget Item** Amount Description 5 B-21 \$152,000 Purchase and Install Closed Circuit 6 Surveillance System - Holyrood 7 8 a) Provide details on resources currently allocated to site security and the 9 annual cost of these resources. 10 11 b) Provide details on the plan for future monitoring of the surveillance 12 system. 13 14 c) Provide details on the budget estimate. 15 16 d) Identify any operating savings or costs related to the purchase of the 17 surveillance system. 18 19 20 Α. a) Site security services at Holyrood are contracted out to Shannahan 21 Investigation who provide 24 hour security coverage for seven days per 22 week. The annual cost of this contract service is \$85,617.48. The current 23 contract will expire in June 2003. 24 25 b) In addition to the services provided by the security contractor, it is 26 planned to install a closed circuit television (CCTV) surveillance system to 27 especially improve the security on the north side of the plant and at the 28 dock where significant vandalism has been experienced. The proposed

	2001 G8	eneral Rate Application
		Page 2 of
1	monitoring system will consist of four cameras loc	ated at various
2	locations and the associated four monitors will be	located at the
3	Guardhouse and one monitor at the Control Roor	n.
4		
5	c) Budgeted amount includes material and installation	on cost of \$113,500
6	which includes:	
7		
8	Equipment Supply	\$74,000
9	Material Supply (Purchases)	23,000
10	Construction, Internal Forces	16,500
11	Engineering, Internal Forces	10,000
12	Corporate O/H, IDC, Esc., Contingency	<u>28,600</u>
13	Total	\$152,100
14		
15	d) There are no direct savings identified, however, it	is expected that
16	vandalism (broken lights, ground wire theft, etc.) v	vill be reduced or
17	eliminated.	

Q. For the budget item identified below, provide the following information:

Budget Item	Amount	Description
B-26	\$496,000	Upgrade TL227 (69kV Berry Hill – Daniels Harbour)

- (a) For each outage from 1996 to 2000, provide the following:
 - (i) date of outage;
 - (ii) cause of outage;
 - (iii) duration of outage; and
 - (iv) number of customers affected.
- (b) Provide the SAIDI and SAIFI for each of past five years for substations served through this line.
- A. (a) The outage information for 1996 to 2000 is given in the following table:

1996 - TL227				
Date of Outage	Cause of Outage	Duration (Min)	# of Customers Affected	
02/10/96	Adverse Weather	155	719	
03/22/96	Adverse Environment	44	1021	
08/10/96	Adverse Weather	181	302	
08/30/96	Adverse Weather	7	569	
12/22/96	Adverse Weather	1	302	
12/22/96	Adverse Weather	1	302	
12/22/96	Adverse Weather	1	302	
12/22/96	Adverse Weather	86	302	
12/23/96	Adverse Weather	2	267	
12/23/96	Adverse Weather	3	719	
12/23/96	Adverse Weather	1	719	
12/23/96	Adverse Weather	42	302	
12/31/96	Adverse Weather	2	302	
12/31/96	Adverse Weather	2	302	
12/31/96	Adverse Weather	1	1021	
12/31/96	Adverse Weather	1	1021	
12/31/96	Adverse Weather	1	1021	
12/31/96	Adverse Weather	44	1021	

Page 2 of 2

1997/1998 – TL227				
Date of Outage	Cause of Outage	Duration (Min)	# of Customers Affected	
-	-	0	0	
There were no su	stained outages on TL227	for 1997/1998		
	1999	- TL227		
Date of Outage	Cause of Outage	Duration (Min)	# of Customers Affected	
10/17/99	Adverse Weather	96	449	
10/17/99	Adverse Weather	4	718	
10/17/99 Adverse Weather		425	718	
	2000	- TL227		
Date of Outage	Cause of Outage	Duration (Min)	# of Customers Affected	
06/22/00	Defective Equipment	8	449	
06/22/00	Defective Equipment	93	269	
09/27/00	Defective Equipment	32	304	

(b) The SAIDI and SAIFI information for 1996 to 2000 is given in the following table:

DELIVERY POINT STATISTICS 1996 - 2000					
YEAR	DELIVERY POINT	SAIFI SI (1)	SAIFI MI (2)	SAIDI (Hrs.)	
1996	COW HEAD	18	0	5.4	
	PARSONS POND	21	11	5.77	
	DANIELS HARBOUR	24	1	9.23	
1997	COW HEAD	0	4	0	
	PARSONS POND	0	3	0	
	DANIELS HARBOUR	9	3	2.22	
1998	COW HEAD	3	9	0.57	
	PARSONS POND	2	9	0.18	
	DANIELS HARBOUR	2	6	0.18	
1999	COW HEAD	5	47	10.6	
	DANIELS HARBOUR	4	34	9	
	PARSONS POND	5	1	12.5	
2000	COW HEAD	1	1	0.13	
	DANIELS HARBOUR	1	1	0.53	
	PARSONS POND	1	0	1.55	

(1) SI – sustained interruptions

1

(2) MI – momentary interruptions

1 Q. For the budget item identified below, provide the following information:

2

3

4

5

Budget Item	Amount	Description
B-35	\$981,000	Provide Service Extensions – Central, Northern and Labrador

- (a) Provide the 5-year historical expenditures, customer counts and unit extension costs per customer addition (material and labour) by region.
- (b) Provide a forecast of the number of customers and methodology used to develop the budgeted amounts.
- 7 A. (a) The following table shows the 5-year expenditure per customer addition by region:

Service Extensions - Central , Northern and Labrador								
Expenditures - 1996 - 2000								
Year	Materials	Labour	Total	No. of	Average Per			
		(Installation)		Customers	Customer			
Central								
1996	183,061	247,151	430,212	177	2,431			
1997	175,248	195,560	370,808	171	2,168			
1998	181,656	139,535	321,191	134	2,397			
1999	234,541	219,107	453,648	172	2,637			
2000	208,458	190,401	398,859	207	1,927			
Northern								
1996	120,915	182,869	303,784	220	1,381			
1997	163,927	165,778	329,705	228	1,446			
1998	159,673	146,375	306,048	185	1,654			
1999	205,338	211,287	416,625	170	2,451			
2000	178,853	202,853	381,706	230	1,660			
Labrador								
1996	319,578	151,770	471,348	383	1,231			
1997	309,667	241,711	551,378	312	1,767			
1998	213,414	222,369	435,783	353	1,235			
1999	216,372	162,942	379,314	273	1,389			
2000	325,918	256,009	581,927	250	2,328			

1	(b)	The forecast of the number of customers for 2001 and 2002 is given in
2		NP-108 (a). The method used for budgeting service extensions is
3		primarily historical trend analysis over the previous five years, as well
4		as incorporating information on proposed community development
5		and economic forecasts. Service extension budgets are difficult to
6		forecast and can be greatly impacted by government expenditures
7		and economic growth.

Q. For each project identified below, provide a cost benefit analysis comparing
 the proposed project with one additional overhaul.

Budget Item	Amount	Description
B-45	\$297,000	Replace 136 kW Diesel Unit No. 279 – Grey River
B-47	\$238,000	Replace 75 kW Diesel Unit No. 252 – Petites
B-52	\$299,000	Replace 136 kW Diesel Unit No. 266 – William's Harbour
B-53	\$318,000	Replace 300 kW Diesel Unit No. 288 – Black Tickle
B-54	\$301,000	Replace 250 kW Diesel Unit No. 293 – Rigolet

A. For the project identified, it is not meaningful to complete a cost benefit analysis comparing the proposed project with one additional overhaul. Replacement of the units is based on a number of issues related to the availability of parts, service life, equipment condition versus Original Equipment Manufacturer specifications, operating hours, overhauls, reliability, maintenance history and costs.

All units identified for replacement have at least 5 major overhauls and between 87,000 and 108,000 operating hours. They are considered to be beyond their useful reliable life. The proposed replacements will enhance system reliability. In addition, the new units will offer lower maintenance costs, improved availability of parts, decreased emissions, reduced fuel consumption and lower lube oil consumption.

1 Q. For the budget items identified below, provide the following information:

2							
			Budge Item	et	Amount	Description	
			B-46		\$282,000	Replace 136 kW Diesel Unit No. 284 – Harbour Deep	
3			B-57		\$515,000	Upgrade Diesel Plant - Harbour Deep	
4		(a)	Provi	de more	e detailed ration	nale for the upgrading of the diesel plant	
5		(-)		building.			
6		(b)	Provi	rovide a detailed breakdown of the costs associated with the project.			
7		(c)	Provi	Provide the following for the Harbour Deep system for the period			
8			1996-	1996-2000:			
9			(i)	energy sold;			
10			(ii)	annual peak demand;			
11			(iii)	capital expenditures;			
12			(iv)	operat	ing costs; and		
13			(v)	the nu	mber of domes	tic/commercial customers.	
14							
15		(d)	Indica	ate the v	viability of exter	nding the life of the existing plant for an	
16			additi	onal 2 to	o 5 years witho	ut this capital expenditure.	
17							
18	A.	(a)		J	•	of two industrial type trailers, one	
19				•		ent (diesel hall) and the other containing	
20			the of	the office/storage/washroom. These trailers were salvaged from a			
21			const	ruction	site and used to	o replace an older plant in 1981.	
22							
23					, ,	ested and doesn't meet either area or	
24			heigh	t require	ements for the	safe performance of operating and	

2001 General Rate Application Page 2 of 3

1		maintenance activities. With insufficient space to in	stall an adequate
2		lifting device, maintenance workers have utilized bu	ilding roof beams
3		in an effort to facilitate lifting of heavy engine parts i	esulting in
4		damage to these beams. Spacing between control	panels and trailer
5		walls is limited and not to CSA standards. Hence, p	erforming
6		maintenance and repairs is very difficult.	
7			
8		The plant presently has no fire detection/alarm syst	em which is
9		considered essential for semi-attended operation. I	ighting in the
10		engine hall and other areas of the plant is inadequa	te for the operation
11		and maintenance work being performed. The upgra	ade will also
12		address environmental concerns in that the existing	plant does not
13		provide for adequate spill containment.	
14			
15	(b)	Specific costs budgeted for the projects identified a	re as follows:
16			
17		Replace 136 kW Unit 284 - Harbour Deep	
18		Material Supply	\$150,000
19		Labour	30,200
20		Engineering	8,000
21		Project Management	14,200
22		Inspection and Commissioning	18,000
23		Corporate O/H, IDC, Esc., Contingency	<u>61,300</u>
24		TOTAL (2002)	\$281,700
25		Engineering (2001)	<u>11,000</u>
26		TOTAL	\$292,700

1	<u> Upgrade Diesel Plant – Harbour Deep</u>	
2	External Contracts	\$290,000
3	Internal Forces	20,000
4	Land Survey/Environment	6,000
5	Engineering, Inspection, Project Mgmt., Commissioning	79,000
6	Corporate O/H, IDC, Contingency	120,000
7	TOTAL (2002)	515,000
8	Engineering (2001)	<u>35,000</u>
9	TOTAL	\$550,000
10		
11	(c) The following is the information for the Harbour Deep Syste	em for the

period 1996 – 2000:

Year	Energy Sold	Annual Peak Demand	Capital Expenditures	Operating Cost \$	Custo	mers
(MWh)		(kW)	\$	Cost	Domestic	General Service
1996	762	272		238,410	74	16
1997	738	273		198,255	72	15
1998	732	269		267,684	71	15
1999	759	286		281,944	71	15
2000	712	257	251,198	336,856	69	14

14

15

16

17

18

12

13

(d) It is not viable or practical to extend the life of the existing plant for an additional 2 to 5 years. Without the proposed capital expenditures, the current safety, environmental and operational issues cannot be mitigated.

For the budget item identified below, provide the following information: Q.

•		J	,	
4	,			
•			•	

2					
			Budget Item	Amount	Description
0			B-58	\$828,000	Upgrade Diesel Plant – St. Lewis
3 4		(a)	Provide m	ore detailed rationa	e for the upgrading of the diesel plant
5			building.		
6		(b)	Provide a	detailed breakdown	of the costs associated with the project.
7		(c)	Provide the	e following for the St	. Lewis system for the period 1996-2000:
8			(i) ene	rgy sold;	
9			(ii) ann	ual peak demand;	
10			(iii) cap	ital expenditures;	
11			(iv) ope	rating costs; and	
12			(v) the	number of domestic	/commercial customers.
13					
14	A.	(a)	The existing	ng facility is of wood	en construction and consists of the
15			original die	esel hall with subsec	quent additions to accommodate a
16			storage ro	om, workshop and a	an office. It is too small to accommodate
17			the increas	se in generation cap	pacity since it was first constructed in
18			1970.		
19					
20			The diesel	hall is very conges	ted and lacks floor area for a laydown
21			space duri	ng overhaul of engi	nes, and wall space to accommodate
22			upgrading	of electrical system	s. As well the low ceiling causes heat
23			entrapmer	nt and extreme temp	peratures during the warmer months.
24			This low c	eiling, combined wit	h a lack of wall space, prevents the
25			installation	of an adequate ve	ntilation system. There is no fire
26			detection	system. The upgrad	de will also address environmental

Page 2 of 2 1 concerns in that the existing plant does not provide for adequate spill 2 containment. 3 (b) Specific costs budgeted for this project are as follows: 4 5 \$400,000 6 **External Contracts** 20,000 7 **Internal Forces** 6,000 Land Surveys/Environment 8 145,000 Engineering, Inspection, Proj. Mgmt., Commissioning 9 Corporate O/H, IDC, Escalation, Contingency 198,000 10 \$769,000 11 TOTAL Engineering (2002) 12 \$59,000 \$828,000 13 TOTAL 14 15 (c) The following is the information for the St. Lewis system for the period 16 1996 - 2000.

Year	Energy Sold	Annual Peak Demand	Capital Expenditures	Operating Cost \$	Custo	mers
	(MWh)	(kW)	\$	Cost \$	Domestic	General Service
1996	1674	470	162,200	378,742	108	28
1997	1609	496		324,423	105	27
1998	1517	456	2,190	435,774	99	27
1999	1587	464	48,275	450,092	104	27
2000	1686	480	6,339	428,095	105	29

1 Q. For the budget items identified below, provide the following information:

Budget Item	Amount	Description
B-37	\$173,000	Replace Poles – South Brook and King's Point System
B-38	\$669,000	Replace Insulators - English Harbour West
B-39	\$317,000	Replace Insulators – South Brook Distribution System
B-40	\$300,000	Replace Conductor / Poles - Burgeo
B-48	\$206,000	Upgrade Distribution Lines – St. Anthony Distribution System
B-49	\$556,000	Relocation of Line – Cook's Harbour

- 3 Provide the following for each year from 1996 to 2000
- 4 (i) SAIDI;
- 5 (ii) SAIFI;
- 6 (iii) total customer minutes of outage; and
- 7 (iv) number of customers served by each distribution feeder.

Page 2 of 4

A. The following tables include the information for B-37 – Replace Poles –
 South Brook and King's Point System

B-37 South Brook	1996	1997	1998	1999	2000
SAIDI	6.54	12.62	20.92	12	16.33
SAIFI	2.77	4.65	8.65	5.01	4.73
Total Customer- Min. of Outage	671,004	1,314,812	2,220,449	1,296,000	1,810,670
No. Customers Served Feeder 1	288	294	309	318	329
Feeder 2	148	152	153	154	157
Feeder 3	292	296	302	309	313
Feeder 4	390	396	401	409	420
Feeder 5	429	431	434	436	452
Feeder 6	19	20	20	20	20
Feeder 7	144	147	150	154	157

B-37 King's Point	1996	1997	1998	1999	2000
SAIDI	8.76	2.77	1.50	17.27	22.66
SAIFI	4.05	2.18	1.34	6.25	8.48
Total Customer- Min. of Outage	315,468	99,705	54,061	623,792	821,198
No. Customers Served Feeder 1	490	491	492	492	494
Feeder 2	110	108	109	110	110

The following table includes the information for B-38 – Replace Insulators –
 English Harbour West.

B-38 English Hr. West	1996	1997	1998	1999	2000
SAIDI	23.08	18.60	6.83	30.03	32.30
SAIFI	12.12	12.80	4.34	6.60	15.14
Total Customer- Min. of Outage	1,095,377	860,436	320,464	1,738,737	1,596,912
No. Customers Served Feeder 1	677	683	688	692	697

3

4

5

The table on B-37 South Brook on the previous page includes the information for B-39 Replacement Insulators – South Brook Distribution System.

6

7

The following table includes the information for B-40-Replace

8 Conductor/Poles – Burgeo.

B-40 Burgeo	1996	1997	1998	1999	2000
SAIDI	6.89	1.52	1.92	0.30	14.04
SAIFI	2.08	3.18	1.32	0.48	3.24
Total Customer- Min. of Outage	348,058	76,634	97,019	15,120	705,931
No. Customers Served Feeder 1	80	83	83	83	83
Feeder 2	365	365	365	365	364
Feeder 3	318	317	315	314	312
Feeder 4	79	78	78	78	79

1

1

The following table includes the information for B-48 Upgrade Distribution Lines – St. Anthony Distribution System.

3

B-48 St. Anthony	1996	1997	1998	1999	2000
SAIDI	14.82	8.72	6.18	5.94	11.62
SAIFI	7.19	4.46	1.56	1.45	5.40
Total Customer	1,594,615	940,925	647,760	653,061	1,276,776
Min. of Outage					
Feeder 2	427	429	427	577	577
Feeder 3	851	851	851	687	687
Feeder 6	515	519	515	568	568

4

5

6

The following table includes the information for B-49 Relocation of Line – Cook's Harbour.

B-49 Cooks	1996	1997	1998	1999	2000
Harbour					
SAIDI	18.22	53.67	11.28	66.50	24.84
SAIFI	7.13	5.10	2.63	8.15	10.96
Total Customer Min.	243,780	714,900	150,900	889,889	277,169
of Outage					
Feeder 7	223	222	223	223	186

1	Q.	For th	For the budget item identified below, answer the following questions or					
2		provi	de the info	ormation as appi	ropriate:			
3								
4		Budg	et Item Amount		Description			
5		B-61		\$517,000	Purchase Additional Corporate Applications			
6								
7		(a)	Provide	details on the co	orporate applications being purchased			
8			including	g the rationale fo	or each purchase.			
9		(b)	How do	these applicatio	ns relate to the J.D. Edwards software system			
10			that Hyd	ro currently use	s for some of its applications?			
11		(c)	Provide	Hydro's policies	and practices with respect to the capitalizing			
12			and exp	ensing of expen	ditures related to software for both internal or			
13			external	software develo	ppment including labour, hardware, software,			
14			mainten	ance, consulting	, and implementation services, and other			
15			costs.					
16								
17	A.	(a)	The \$51	7,000 for the pu	rchase of Additional Corporate Applications			
18			consists	of: \$117,500 fo	or Short Term Load Forecast Software and			
19			\$399,10	0 for Corporate	Applications Software.			
20								
21			Short To	erm Load Fore	cast Software:			
22			Obtainin	g accurate fored	casts of load expected on the system for the			
23			short ter	m (several days	ahead) is becoming an increasingly important			
24			task as l	Hydro attempts	to optimize thermal unit efficiency and			
25			minimize	e spill events, wh	nile maintaining a high degree of reliability on			
26			its bulk s	system. These "	day-ahead" load forecasts form the basis for			
27			decision	s regarding equ	ipment removal for maintenance, as well as			

Paq	е	2	of	2

provide the basis for changing the number of thermal units on-line at 1 2 Holyrood. 3 4 Benefits that will accrue as a result of this proposal include: 5 Improved ability to take advantage of opportunities to optimize 6 thermal unit dispatch at Holyrood. 7 Improved decision-making ability regarding equipment removal 8 for maintenance and, 9 Improved ability to predict and mitigate system spills. 10 11 **Corporate Applications:** 12 Though J.D. Edwards is an integrated system providing for the bulk of 13 Hydro computing needs, the Corporate Applications budget provides 14 funds for purchase and implementation of specialty software, add-on 15 modules and 3rd party solutions where these are the only viable 16 options to address business needs. 17 18 (b) The Short Term Load Forecast Software is a specialty software 19 package, not related to the JDE Software application system. The 20 remainder of the, Corporate Applications, funds will be used to acquire specialty software, add-on modules and 3rd party solutions that are 21 22 identified during the year as required to provide additional 23 functionality. 24 25 (c) Hydro's policy is to capitalize the costs associated with the 26 acquisition/development and implementation of computer software

instances where projected costs exceed \$25,000.

1 Q. For the budget item identified below, provide the following information: 2 3 **Budget Item Description** Amount 4 B-60 \$104,000 Acquire Document Management & 5 Imaging System 6 7 (a) Provide justification to support purchase of this system. 8 (b) Provide estimates of capital expenditures for subsequent years for the 9 additional phases of this system. 10 11 12 Α. (a) A Document Management System which covers all phases of a 13 document life cycle has been identified as a priority for the 14 Corporation. Currently the Corporation has a records management system, which is antiquated. Additionally Document Solutions were 15 16 traditionally implemented on a project basis to afford a departmental 17 solution as opposed to a Corporate solution. Imaging solutions were 18 installed in the same fashion. A Corporate Solution is required to 19 provide better control, access and management of the life cycle for all 20 documents. 21 22 (b) Once a detailed assessment of the requirements has been completed, 23 future project costs will be identified.

1	Q.	For th	he Budget item identified below, answer the following questions or					
2		provid	ide the information as appropriate:					
3								
4		Budg	jet Item	Amount	Description			
5		B-	64	\$2,109,000 Replacement of AS-400 Computers				
6								
7		(a)	Provide d	etails to suppor	t the cost estimate.			
8		(b)	Provide d	etails on the imp	pact of deferring the purchase	of this item		
9			and conti	nuing to utilize t	he existing equipment.			
10		(c)	Is comput	ter capacity beir	ng increased as a result of the	replacement?		
11		(d)	If capacity	y is being increa	sed, indicate the capacity incr	ements		
12			proposed	and the reason	s for the capacity increases by	computer		
13			applicatio	ns.				
14								
15								
16	A.	(a)	Details of	the Cost Estima	ate are as follows :			
17								
			Cost e	estimate AS400	Production Computer	1,700,000		
			Cost e	estimate for AS4	00 Development Computer	300,000		
			Projec	t Management		3,000		
			Labor			5,000		
			Inspec	ction and Comm	issioning	2,000		
			Corpo	rate O/H, IDC, E	ESC., Contingency	95,300		
					Total	\$2,109,000		
18								
19								
20		(b)	The impa	ct of deferring th	ne purchase of this item and c	ontinuing to		
21			utilize the	existing equipm	nent would prevent Hydro from	n taking		

NP-116 2001 General Rate Application
Page 2 of 2 advantage of enhancements of the latest software releases. In
particular the existing AS400 system cannot adequately support the
migration of the JDE financial suite to the upgraded version of the
product (One World). In 2002, Hydro will be initiating a One World
pilot in order to assess the technology and business implications of
moving to One World.
The computer capacity is being increased as a result of this
replacement.
·
The capacity increments proposed are for a 60 % increase in
performance on the Production AS400 and 40% increase in the
Development AS400. The capacity increases are needed to allow
Hydro to migrate to the JD Edwards One World product, which
provides a Web based or Client server interface to the computer

(c)

(d)

applications.

1 Q. Provide the reports on the studies undertaken in 1996, 1998 and 2000 on the distribution system cost classification (JAB, page 2, lines 10-22).

3

4 A. The requested reports on the studies undertaken in 1996, 1998, 2000 on the distribution system cost classification are attached.

Q. Provide details of the generation credit for Newfoundland Power in the 2002
 Cost of Service (JAB), Schedule II).

3

5

A. The credit is calculated as follows:

6 7

Newfoundland Power Installed Capacity	MW
Hydraulic	94.0
Gas Turbine	46.9
Diesel	7.0
Total	147.9
Less 18.5% Reserve*	23.1
Capacity Credit	124.8

8

*Note – expressed as a percent of load and calculated as

10 147.9 (1 – 1/1.185)

11

12

13

The current estimate of the credit in JAB Schedule II is in error and will be corrected as above.